69 research outputs found

    Scaled metal forming experiments: A transport equation approach

    Get PDF
    The focus of this paper is on a method for the design of bespoke small-scale pilot, metal-forming processes and models that accurately represent corresponding industrial-scale processes. Introducing new complex metal forming processes in industry commonly involves a trial and error approach to ensure that the final product requirements are met. Detailed process modelling, analysis and small-scale feasibility trials could be carried out instead. A fundamental concern of scaled experiments, however, is whether the results obtained can be guaranteed to be representative of the associated industrial processes. Presently, this is not the case with classical approaches founded on dimensional analysis providing little direction for the design of scaled metal-forming experiments. The difficulty is that classical approaches often focus predominantly on constitutive equations (which indirectly represent micro-structural behaviour) and thus focus on aspects that invariably cannot be scaled. This paper introduces a new approach founded on scaled transport equations that describe the physics involved on a finite domain. The transport approach however focuses on physical quantities that do scale and thus provides a platform on which bulk behaviour is accurately represented across the length scales. The new approach is trialled and compared against numerically obtained results to reveal a new powerful technique for scaled experimentation

    Morphino: A nature-inspired tool for the design of shape-changing interfaces

    Get PDF
    The HCI community has a strong and growing interest in shape-changing interfaces (SCIs) that can offer dynamic af- fordance. In this context, there is an increasing need for HCI researchers and designers to form close relationships with dis- ciplines such as robotics and material science in order to be able to truly harness the state-of-the-art in morphing technolo- gies. To help these synergies arise, we present Morphino: a card-based toolkit to inspire shape-changing interface designs. Our cards bring together a collection of morphing mechanisms already established in the multidisciplinary literature and illustrate them through familiar examples from nature. We begin by detailing the design of the cards, based on a review of shape-change in nature; then, report on a series of design sessions conducted to demonstrate their usefulness in generating new ideas and in helping end-users gain a better understanding of the possibilities for shape-changing materials

    Free vibration analysis of dragonfly wings using finite element method

    No full text
    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods

    Resilin microjoints: A smart design strategy to avoid failure in dragonfly wings

    Get PDF
    Dragonflies are fast and manoeuvrable fliers and this ability is reflected in their unique wing morphology. Due to the specific lightweight structure, with the crossing veins joined by rubber-like resilin patches, wings possess strong deformability but can resist high forces and large deformations during aerial collisions. The computational results demonstrate the strong influence of resilin-containing vein joints on the stress distribution within the wing. The presence of flexible resilin in the contact region of the veins prevents excessive bending of the cross veins and significantly reduces the stress concentration in the joint

    Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins

    No full text
    Insect wing veins are biological composites of chitin and protein arranged in a complex lamellar configuration. Although these hierarchical structures are found in many 'venous wings' of insects, very little is known about their physical and mechanical characteristics. For the first time, we carried out a systematic comparative study to gain a better understanding of the influence of microstructure on the mechanical characteristics and damping behaviour of the veins. Morphological data have been used to develop a series of three-dimensional numerical models with different material properties and geometries. Finite-element analysis has been employed to simulate the mechanical response of the models under different loading conditions. The modelling strategy used in this study enabled us to determine the effects selectively induced by resilin, friction between layers, shape of the cross section, material composition and layered structure on the stiffness and damping characteristics of wing veins. Numerical simulations suggest that although the presence of the resilin-dominated endocuticle layer results in a much higher flexibility of wing veins, the dumbbell-shaped cross section increases their bending rigidity. Our study further shows that the rubber-like cuticle, friction between layers and material gradient-based design contribute to the higher damping capacity of veins. The results of this study can serve as a reference for the design of novel bioinspired composite structures.1123

    Basal complex and basal venation of Odonata wings: Structural diversity and potential role in the wing deformation

    Get PDF
    Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs)
    • …
    corecore